An effective retinal blood vessel segmentation method using multi-scale line detection
نویسندگان
چکیده
Changes in retinal blood vessel features are precursors of serious diseases such as cardiovascular disease and stroke. Therefore, analysis of retinal vascular features can assist in detecting these changes and allow the patient to take action while the disease is still in its early stages. Automation of this process would help to reduce the cost associated with trained graders and remove the issue of inconsistency introduced by manual grading. Among different retinal analysis tasks, retinal blood vessel extraction plays an extremely important role as it is the first essential step before any measurement can be made. In this paper, we present an effective method for automatically extracting blood vessels from colour retinal images. The proposed method is based on the fact that by changing the length of a basic line detector, line detectors at varying scales are achieved. To maintain the strength and eliminate the drawbacks of each individual line detector, the line responses at varying scales are linearly combined to produce the final segmentation for each retinal image. The performance of the proposed method was evaluated both quantitatively and qualitatively on three publicly available DRIVE, STARE, and REVIEW datasets. On DRIVE and STARE datasets, the proposed method achieves high local accuracy (a measure to assess the accuracy at regions around the vessels) while retaining comparable accuracy compared to other existing methods. Visual inspection on the segmentation results shows that the proposed method produces accurate segmentation on central reflex vessels while keeping close vessels well separated. On REVIEW dataset, the vessel width measurements obtained using the segmentations produced by the proposed method are highly accurate and close to the measurements provided by the experts. This has demonstrated the high segmentation accuracy of the proposed method and its applicability for automatic vascular calibre measurement. Other advantages of the proposed method include its efficiency with fast segmentation time, its simplicity and scalability to deal with high resolution retinal images. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملA multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images
Segmenting the retinal vessels from fundus images is a prerequisite for many CAD systems for the automatic detection of diabetic retinopathy lesions. So far, research efforts have concentrated mainly on the accurate localization of the large to medium diameter vessels. However, failure to detect the smallest vessels at the segmentation step can lead to false positive lesion detection counts in ...
متن کاملRetinal Blood Vessel Segmentation with Optic Disc Pixels Exclusion
The morphological changes of retinal blood vessels are important indicators used to diagnose and monitor the progression of various diseases. A number of retinal blood vessel segmentation methods have been introduced, including the line operator based methods, which have shown satisfactory results. However, the basic line operator method cannot discriminate the pixels around the retinal optic d...
متن کاملRetinal vessel segmentation using a multi-scale medialness function
Recently, automated segmentation of retinal vessels in optic fundus images has been an important focus of much research. In this paper, we propose a multi-scale method to segment retinal vessels based on a weighted two-dimensional (2D) medialness function. The results of the medialness function are first multiplied by the eigenvalues of the Hessian matrix. Next, centerlines of vessels are extra...
متن کاملAutomatic Segmentation of Retinal Blood Vessels Based on Improved Multiscale Line Detection
The appearance of retinal blood vessels is an important diagnostic indicator of serious disease, such as hypertension, diabetes, cardiovascular disease, and stroke. Automatic segmentation of the retinal vasculature is a primary step towards automatic assessment of the retinal blood vessel features. This paper presents an automated method for the enhancement and segmentation of blood vessels in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013